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Abstract. We give strong evidence that the linear sigma model at small external momenta is an effective
theory for the leading logarithms of chiral perturbation theory. Based on this evidence an attempt is made
to sum the leading logarithms of chiral perturbation theory to all orders. We illustrate why this summation
nonetheless fails when one uses standard renormalization group techniques of renormalizable quantum field
theories.

1 Introduction

The theory of the strong interaction, quantum chromody-
namics, does not allow for the application of the power-
ful perturbation techniques in the low-energy region. It is,
however, possible to use the symmetries of QCD to con-
struct an effective theory in the low-energy region, chiral
perturbation theory (ChPT) [1–3], which allows for a sys-
tematic perturbative expansion of Green functions in pow-
ers of external momenta and quark masses.
In actual calculations in ChPT one expects the dom-

inant contribution to stem from the leading effective La-
grangian, which generates the leading chiral logarithm.
Even if the latter do not always dominate, it would be very
interesting to know the leading chiral logarithms to every
order in the perturbative expansion, and to sum them up.
In a recent publication [4], we presented a procedure

which allows the calculation of leading logarithms of cer-
tain Green functions in the chiral limit rather easily. In the
present article, we address the question whether it is pos-
sible to sum up these leading logarithms to all orders.
In a given renormalizable quantum field theory, resum-

mation of logarithms is based on the renormalization group
equations (RGE). However, chiral perturbation theory is
not renormalizable, and the structure of the RGE is there-
fore more involved [5]. In order to avoid the problems in-
troduced by the nonrenormalizable nature of chiral per-
turbation theory, we propose to consider a theory that is
renormalizable and reproduces the leading logarithms of
chiral perturbation theory. It is then natural to expect that
the summation of logarithms in this renormalizable theory
can be performed by the use of the RGE.
It has been known since long that the tree-level graphs

of the linear sigmamodel reproduce, at small momenta, the
results of current algebra. In modern language, this means
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that they agree with the tree-level graphs of ChPT. It was
shown in [2] that this persists at one-loop order: provided
that the low-energy couplings in the chiral Lagrangian are
properly adapted, the Green functions evaluated in the lin-
ear sigma model at one-loop order agree with the result of
ChPT at order p4; see also [6]. This shows that the linear
sigma model is a promising candidate for a renormalizable
theory that generates the leading logarithms in ChPT.
To carry the comparison between ChPT and the linear

sigma model to higher orders in the momentum expansion,
we consider the correlator of two scalar quark currents,

H(s) = i

∫
dxeipx〈0|TS0(x)S0(0)|0〉 ,

S0 = ūu+ d̄d; s= p2 , (1)

in a world with two flavors in the chiral limit mu =md =
0. Its leading chiral logarithms have been worked out in
ChPT to five-loop accuracy in [4]. This article is devoted to
an analysis of this correlator in the framework of the linear
sigmamodel, addressing the questions just raised: does the
linear sigma model reproduce these logarithms, and if so,
can they be summed?
The structure of the article is as follows: In Sect. 2, we

recall the structure of the leading logarithms of H(s) in
chiral perturbation theory in the chiral limit. In Sect. 3,
we calculate the leading logarithms of the scalar two-point
function – which corresponds to the quantity H(s) – in
the linear sigma model, and we show in Sect. 4 that this
theory reproduces the leading logarithms of chiral per-
turbation theory up to and including two loops in this
case. For this reason, we believe that the linear sigma
model indeed is a renormalizable effective theory suitable
to calculate the leading logarithms in ChPT. In Sect. 5,
we consider the summation of leading logarithmic singu-
larities in both the symmetric and the spontaneously bro-
ken phase of the linear sigma model. In the following sec-
tion, Sect. 6, we apply this technique to the scalar two-
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point function in the spontaneously broken phase. We are
able to sum up a certain class of logarithmic terms, and ex-
plain why an explicit summation of all leading logarithms
is not possible with this technique. Finally, Sect. 7 con-
tains a summary and concluding remarks. The appendices
contain several technical aspects of our investigation: in
Appendix A, we present expressions for the relevant trian-
gle graphs, whereas the two-loop diagrams needed in the
calculation of the two-point function are displayed and dis-
cussed in Appendix B. A dispersive calculation, used as
a check on certain two-loop diagrams, is presented in Ap-
pendix C, and scale dependent logarithms are summed up
in Appendix D.

2 Leading logarithms in ChPT

In the chiral limit, the low-energy expansion of the scalar
correlator can be written as

H(s) =
B2

16π2
{P0(s, µ̄)+P1(s, µ̄)L+P2(s, µ̄)L

2+ · · ·} ,

L= ln

(
−
s

µ̄2

)
, (2)

where Pi are polynomials in N = s/(16π
2F 2). The quan-

tities B,F are the two low-energy constants (LECs) at
leading order in the chiral expansion [2], and the running
scale of ChPT is denoted by µ̄. The leading terms P̄i of the
polynomials Pi – which are the coefficients of the leading
logarithms – are known up to five loops [4],

P̄0 = 0 , P̄1 =−6, P̄2 = 6N ,

P̄3 =−
61

9
N2, P̄4 =

68

9
N3 , P̄5 =−

140347

16200
N4 . (3)

The full polynomials Pi differ from P̄i by terms of order s
i

and higher.

3 Chiral logarithms in the linear sigma model

We first introduce our notation of the linear sigma model
and work out the quantity in the linear sigma model that
corresponds to the scalar correlator H(s). Then we calcu-
late the two-loop leading logarithm of this quantity in the
linear sigma model.

3.1 Notation

The Lagrangian of the O(4) linear sigma model [7, 8]
coupled to external scalar sources reads

L=
1

2
∂µϕ

a∂µϕa+
m2

2
ϕaϕa−

g

4
(ϕaϕa)2+ jaϕa ,

a= 0, . . ., 3 . (4)

If m2 > 0, the O(4) symmetry is spontaneously broken
down to O(3), leading to three Goldstone bosons. In order
to expand around the ground state ϕG = (v,0) of the spon-

taneously broken theory, one rewrites the Lagrangian with
the shifted fields ϕ= (φ+v,π) and the massless Goldstone
bosons πa, and the massive field φ become visible in the
Lagrangian,

L=
1

2
(∂µφ∂

µφ+∂µπ
a∂µπa)−

1

2

(
3gv2−m2

)
φ2

+ vKφ− gvφ3−
g

4
φ4−

g

4
(πaπa)2+

1

2
Kπaπa

− gvφπaπa−
g

2
φ2πaπa+ j0φ+ jaπa ,

K =m2− gv2 . (5)

To every order of the calculation, one has to determine v
such that the vacuum expectation value vanishes,

〈0|φ(x)|0〉 = 0 .

To one loop, the parameters have to be renormalized in the
following way:

g = µ4−dgr[1−24grλ] , m
2 =m2r [1−12grλ] ,

ϕ= Z
1
2ϕR , Z = 1+O

(
g2r
)
,

λ=−
1

32π2

(
1

ε
+Γ ′(1)+ ln(4π)+1

)
,

d= 4−2ε . (6)

For the vacuum expectation value v, one obtains

v = v0

[
1−

3gr
16π2

ln

(
2m2r
µ2

)
+O
(
g2r
)]
,

v0 = µ
−ε mr√
gr
. (7)

Note that the scale µ is different from the scale µ̄.

3.2 Correspondence of the linear sigma model
to chiral perturbation theory

As shown in [2], the generating functionals of the linear
sigma model (equipped with additional external fields) in
the heavy mass limit and chiral perturbation agree at first
nonleading order, provided the low-energy constants of chi-
ral perturbation theory are pertinent functions of the pa-
rameters of the linear sigma model.
We stick to our example, the scalar two-point function,

and identify the corresponding quantity in the linear sigma
model. The external field χa – which couples to the quark
condensate – finds its counterpart in the external scalar
source ja.1 Therefore, the counterpart ofH(s) is the renor-
malized scalar two-point function

G
(2,0)
R (s) = iZ

∫
d4xeipx〈0|Tφ(x)φ(0)|0〉 , s= p2 , (8)

for small external momenta s.

1 This identity only holds up to a finite renormalization
factor, which is a polynomial in the renormalized coupling
constant gr. However, this factor does not affect the leading
logarithms.
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3.3 Leading logarithm to two loops

We calculate the leading logarithms to one and two loops in
the quantity G

(2,0)
R (s). In the following, we only quote the

result and relegate the description of the calculation and
the individual loop contributions to Appendix B.
It is evident that G

(2,0)
R (s) for small external momenta

has the structure

G
(2,0)
R

(
s, gr,m

2
r , µ
)
=
1

2m2r

[
c(0)
(
s,m2r , µ

)

+ c(1)
(
s,m2r , µ

)
gr

+ c(2)
(
s,m2r , µ

)
g2r +O

(
g3r
) ]
.

(9)

We now decompose the coefficients c(i) and indicate all log-
arithms that are possible at the corresponding order in gr:

c(0) = a
(0)
0,0 ,

c(1) = a
(1)
1,0Ls+a

(1)
0,1Lm+a

(1)
0,0 ,

c(2) = a
(2)
2,0L

2
s+a

(2)
1,1LsLm+a

(2)
0,2L

2
m+a

(2)
1,0Ls

+a
(2)
0,1Lm+a

(2)
0,0 ,

...

Ls = ln

(
−
s

µ2

)
, Lm = ln

(
2m2r
µ2

)
. (10)

The coefficients a
(k)
l,m are polynomials in s/m

2
r . The indices

of a coefficientX
(N,t)
k,l always have the same meaning in the

following: the lower indices k and l indicate the power of
the momentum and mass logarithms Ls and Lm, respec-
tively. The upper indices N and (if present) t stand for the
order of the coupling constant gr and the power of s/m

2
r ,

respectively.
In general, the coefficient c(k) can be written as a double

sum:

c(k) =
k∑
n=0

k−n∑
l=0

a
(k)
l,k−n−lL

l
sL
k−n−l
m . (11)

The coefficients a
(k)
l,m are given by

a
(0)
0,0 = 1+

1

2

s

m2r
+ · · · ,

a
(1)
0,0 =−

3

8π2
−
21

64π2
s

m2r
+ · · · ,

a
(1)
1,0 =−

3

16π2
−
3

16π2
s

m2r
+ · · · ,

a
(1)
0,1 =−

3

16π2
−
3

16π2
s

m2r
+ · · · ,

a
(2)
2,0 =

3

256π4
s

m2r
+ · · · ,

a
(2)
1,1 =−

9

128π4
−

3

128π4
s

m2r
+ · · · ,

a
(2)
1,0 =

3

128π4
+
21

256π4
s

m2r
+ · · · . (12)

As an independent check of our loop calculation, we worked
out the discontinuity of G

(2,0)
R (s),

G
(2,0)
R (s+ iε)−G(2,0)R (s− iε) = 2iπρ(s) (13)

and compare with the discontinuity obtained from the
optical theorem. The two expressions agree at the order
considered. We refer to Appendix C for further details.

4 Linear sigma model versus ChPT

The translation rules provided in [2] are

B =

√
gr

2mr

(
1+

1

16π2
(3Lm−1)gr+O

(
g2r
))
,

F 2 =
m2r
gr

(
1−

1

16π2
(6Lm−1)gr+O

(
g2r
))
. (14)

Note that the coupling constant gr differs from the one in-
troduced in [2] by a term of order g2r . The higher-order
corrections to the above relations do not affect the coeffi-
cients of the leading logarithms a

(N)
N,0.

Translating with the above rules the coefficient of the
one- and two-loop leading logarithms of the scalar correla-
tor in (2) leads to

B2P̄1

16π2
=
1

2m2r

(
−
3

16π2
gr+

3

128π4
(1−3Lm)g

2
r +O

(
g3r
))

=
1

2m2r

(
a
(1,0)
1,0 gr+

(
a
(2,0)
1,0 +a

(2,0)
1,1 Lm

)
g2r +O

(
g3r
))
,

B2P̄2

16π2
=
1

2m2r
·
3

256π4
s

m2r
g2r +O

(
g3r
)

=
1

2m2r
a
(2,1)
2,0 g

2
r +O

(
g3r
)
. (15)

It is seen that they agree at the order considered. We
have checked that the coefficients a

(0,0)
0,0 , a

(1,0)
0,0 and a

(1,0)
0,1

agree as well. Therefore the coefficients of the one- and
two-loop leading logarithms of the linear sigma model
are the same as the coefficients of the one- and two-loop
leading logarithms in chiral perturbation theory in this
correlator.
We take this result as strong evidence that the leading

logarithms of both theories agree to all orders in per-
turbation theory. Further support for this conjecture is
the fact that, as shown in [4], the leading logarithms in
the scalar two-point function in ChPT are determined
by the tree-level amplitude. Stated differently, we be-
lieve that the linear sigma model acts as a renormaliz-
able effective field theory for the leading logarithms in
ChPT.
In the remaining part of this article, we assume that

our conjecture is correct, and we work out its consequences:
summing leading logarithms in the linear sigma model
amounts to summing leading logarithms of the pertinent
quantities in ChPT.
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5 Renormalization group analysis
in the linear sigma model

In this section, we illustrate the summation of leading
logarithms with renormalization group techniques in the
symmetric as well as in the spontaneously broken phase
and investigate the low-energy structure of the correlator
G
(2,0)
R (s).

5.1 Symmetric phase

Here we consider mass logarithms in the perturbative ex-
pansion of the physical mass (i.e., the position of the pole in
the two-point function) in the symmetric phase of the linear
sigmamodel. In particular, we recall how the leading, next-
to-leading, etc. logarithms can be explicitly summed up.
First we recall the RGE in the unbroken phase of the linear
sigma model for renormalized, Fourier transformed Green
functions in four space-time dimensions G

(n)
R (pi; gr,m

2
r , µ)

(
D+

4∑
k=1

nkγ

)
G
(n)
R (pi) = 0 ;

n= (n1, n2, n3, n4) , (16)

where

D = µ
∂

∂µ
+β

∂

∂gr
−m2rγm

∂

∂m2r
,

β = µ
∂

∂µ
gr =

∞∑
k=2

β(k)gkr =
3

2π2
g2r +O

(
g3r
)
,

γm =−
1

m2r
µ
∂

∂µ
m2r =

∞∑
k=1

γ(k)m g
k
r =−

3

4π2
gr+O

(
g2r
)
,

γ =
1

2
β
∂

∂gr
logZ =O

(
g2r
)
. (17)

In the perturbative expansion, the physical mass has the
structure

m2ph =m
2
r

(
k(0)+k(1)gr+k

(2)g2r + · · ·
)
, (18)

where

k(n) = k(n)n L
n
φ4+k

(n)
n−1L

n−1
φ4
+ · · ·+k(n)0 ; k

(0) = 1 ,

Lφ4 = ln

(
m2r
4πµ2

)
. (19)

The leading logarithms are fully determined by the one-
loop expressions β(2) and γ

(1)
m . The proof of this statement

(following the lines of [9]) starts from the observation that
the physical mass obeys the homogeneous RGE

Dm2ph = 0 . (20)

Collecting the coefficients proportional to gNr L
N−1
φ4
, which

must vanish individually, we find the recursion relation

−2Nk(N)N +
{
(N −1)β(2)−γ(1)m

}
k
(N−1)
N−1 = 0 ;

N = 1, 2, . . . (21)

It is seen that the one-loop expressions for the β- and
γm-functions suffice to determine the coefficients k

(N)
N . In

order to sum the logarithms, we introduce the quantities

fi(x) =
∞∑
n=0

k(i+n)n xn ; x= grLφ4 ,

m2ph =m
2
r

∞∑
i=0

fi(x)g
i
r . (22)

The fi correspond to the sum of terms along the tilted lines
in Fig. 1; in particular, f0 (f1) denotes the sum of the lead-
ing (next-to-leading) logarithms. From the recursion rela-
tion (21) it follows that f0 satisfies the differential equation{(

2−xβ(2)
) d
dx
+γ(1)m

}
f0(x) = 0 , (23)

from which one has

f0(x) =

(
1−
β(2)

2
x

) γ(1)m
β(2)

=

(
1−

3

4π2
x

)− 12
. (24)

The next-to-leading logarithms can be summed up in an
analogous fashion. It is easy to convince oneself that one
needs a two-loop calculation of the β- and γm-functions in
this case.

5.2 Spontaneously broken phase

The derivation of the renormalization group equations for
the linear sigma model in the spontaneously broken phase
goes through exactly like in the unbroken phase,

(
D+

(
k+

3∑
t=1

jt

)
γ

)
G
(k,j)
R (pi) = 0 ;

j= (j1, j2, j3) . (25)

Fig. 1. Illustration of the structure of the physical mass in the
symmetric phase of the linear sigma model. The quantity n
represents the order in gr,m stands for the exponent of the log-

arithm Lφ4 , the points represent the coefficients k
(n)
m , and the

different dotted lines stand for the connection between them
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Here we have denoted the renormalized Fourier trans-
formed Green function with k (j) sigma (pion) fields by

G
(k,j)
R . As in the symmetric phase, it is straightforward to
sum up the leading logarithms of quantities, which depend
only on two scales. We illustrate this statement with the
vacuum expectation value and the zero of the inverse sigma
propagator.

5.2.1 Vacuum expectation value

The vacuum expectation value of the sigma field fulfills the
inhomogeneous renormalization group equation

(D+γ)v
(
gr,m

2
r , µ
)
= 0 . (26)

The perturbative series of v has the form

v =
mr
√
gr

(
v(0)+ v(1)gr+ v

(2)g2r + · · ·
)
,

v(n) = v(n)n L
n
m+ v

(n)
n−1L

n−1
m + · · ·+ v(n)0 ; v

(0) = 1 .

(27)

The recursion relation for the coefficients of the leading
logarithms reads

2Nv
(N)
N +

{
β(2)
(
3

2
−N

)
+
1

2
γ(1)m

}
v
(N−1)
N−1 = 0 .

(28)

Collecting again the leading logarithms in a function h0(x)
leads to the differential equation

{
1

2

(
β(2)+γ(1)m

)
+
(
2−β(2)x

) d
dx

}
h0(x) = 0 ,

(29)

where x= grLm, with the solution

h0(x) =

(
1−
β(2)

2
x

) γ(1)m +β(2)

2β(2)

=

(
1−

3

4π2
x

) 1
4

.

(30)

5.2.2 The zero of the inverse sigma propagator

Next we investigate the zero M̂ of the inverse sigma propa-
gator. We denote by Re(M̂) its real part, and find

Re(M̂) = 2m2r

∞∑
n=0

gnr

n∑
i=0

b
(n)
i L

i
m

= 2m2r

∞∑
i=0

pi(x)g
i
r ,

p0(x) =

(
1−
β(2)

2
x

) γ(1)m
β(2)

=

(
1−

3

4π2
x

)− 12
. (31)

Note that in the broken phase the functions pi(x) are the
same as in the symmetric phase. Therefore, the coefficients

of the mass logarithms in Re(M̂) and in the physical mass
of the symmetric phase coincide up to a factor of 2.

6 Summing leading logarithms?

Here, we apply renormalization group techniques to the

correlator G
(2,0)
R (s), written in the form (9), with an at-

tempt to sum the leading logarithms a
(N)
N,0L

N
s . To start

with, we insert the right hand side of (9) into the RGE (25).

As the coefficients a
(n)
k,l are analytic functions of

s
m2r
they

can be represented by a power series,

a
(n)
k,l =

∞∑
t=0

a
(n,t)
k,l

(
s

m2r

)t
= a

(n,0)
k,l +a

(n,1)
k,l

s

m2r
+ · · · . (32)

Analyticity demands the disappearance of the terms pro-
portional to LisL

j
m individually and leads to the recursion

relations for the leading momentum logarithms,

−2Na(N,t)N,0 −2a
(N,t)
N−1,1

+
(
(N −1)β(2)+(1+ t)γ(1)m

)
a
(N−1,t)
N−1,0 = 0 . (33)

From this relation one concludes that in every order in
s/m2r such an equation exists. This is manifested by the
index t. Furthermore, this recursion relation connects the

coefficient of the leading logarithm at order gNr , a
(N,t)
N,0 ,

with the coefficient of the leading logarithm at order gN−1r ,

a
(N−1,t)
N−1,0 , and with the part of the coefficient of the next-to-

leading logarithm at order gNr , which is proportional to one

mass logarithm, a
(N,t)
N−1,1. In addition only the one-loop re-

sults of the β- and γm-function, β
(2) and γ

(1)
m , appear in the

recursion relation.
Comparing with the previous recursion relations for the

physical mass and for the vacuum expectation value, one
finds that in these relations only the coefficients of leading
logarithms are involved. This fact allows the summation
of the leading logarithms. In (33), however, the coefficients
of the leading logarithms are no longer connected directly.
This is illustrated in Fig. 2 by the dint of the solid line.
First one could expect that there still exist recursion rela-
tions that allow for a direct connection between the coeffi-
cients of the leading logarithms. However, the dashed lines
stand for recursion relations without leading logarithm co-
efficients and demonstrate that this idea is not successful.
Therefore, the summation of the leading logarithms fails,
since the troublesome coefficient a

(N,t)
N−1,1 is only determined

by a N -loop calculation.
As seen above, only coefficients with power t in s/m2r

enter in the recursion relation. On the other hand the coef-
ficient of the leading logarithm at order gNr is proportional
to (s/m2r )

N−1, hence this recursion relation cannot relate
them.
Therefore, one cannot determine the leading logarithm

at order gNr with the knowledge of the leading logarithm at
lower order. For this reason the summation fails.
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Fig. 2. Illustration of the connections between the coefficients
of the scalar two-point function in the spontaneously broken
phase of the linear sigma model at order g3r . The quantity n rep-
resents the order in gr, and k stands for the exponent of the
logarithm Ls. Every type of line indicates recursion relations
containing the connected coefficients. There is one such picture
for every order in s

m2r

The situation becomes clear by introducing a new scale
ρ and splitting up all mass and momentum logarithms as
follows:

Ls = ln

(
−
s

ρ2

)
+Lµ , Lm = ln

(
2m2r
ρ2

)
+Lµ ,

Lµ = ln

(
ρ2

µ2

)
. (34)

Therefore, all terms of the form gNr L
k
sL
l
m with k+ l=N in

the scalar two-point function (9) generate a logarithm LNµ .
At a given order gNr , one is left with one µ-dependent log-
arithm with power N . The leading logarithms Lµ can be
summed to all orders, as we show explicitly in Appendix D.
It is now obvious that only all explicitly scale dependent
logarithms Lµ can be summed with the help of the RGE.
In the case of the vacuum expectation value and the zero

of the inverse propagator, the coefficients of the logarithms
Lm and Lµ are the same, because there are only two scales
involved. In the presence of three scales, this is no longer
true, and a separation between the leading momentum log-
arithmsLNs and other logarithms to the powerN likeL

k
sL
l
m

with k+ l=N is no longer possible with this technique.
Another way to have access to the recursion relation is

the solution of the Callan–Symanzik equation, which pro-
vides a relation between n-point functions with momentum
pi and the scaled momentum pi/ξ. But the recursion rela-
tions obtained in this way can be extracted from the ones
worked out with the RGE. Therefore the Callan–Symanzik
equation does not contain new information.

6.1 Linear sigma model with scale independent
counterterms

In chiral perturbation theory, the leading logarithms are in
principle always accessible with a one-loop calculation [5].
One might hope to transfer this method to the linear

sigma model by using a formulation of the linear sigma
model with scale independent counterterms, analogously
to chiral perturbation theory. This formulation is discussed
in [10, 11]. Studying the simplest case, we tried to calculate
the one-loop leading momentum logarithm of the scalar
two-point function with the help of the tree-level diagram
containing the counterterm. One observes that only the
sum of the coefficients of the leading momentum and the
leading mass logarithm can be obtained in this manner.
Therefore the statement is the same as with the recursion
relations in the previous subsection.

7 Summary and conclusion

In this article, we investigate the structure of leading chi-
ral logarithms in the correlator of two scalar quark cur-
rents, (1). In particular, we determine this correlator in the
framework of the linear sigma model and compare the re-
sult with what is known from ChPT.
As a first step, we show that the leading logarithms

agree in the two theories at order p6 in the low-energy ex-
pansion (two-loop order). To the best of our knowledge,
this is a new result and strongly suggests that the lin-
ear sigma model can be used as a renormalizable effective
theory to calculate leading logarithms in SU(2)×SU(2)
ChPT. The result also suggests that renormalization group
techniques can be used to sum these terms. For this reason,
we investigate the RG equation in the linear sigma model
and use it to sum up leading mass singularities, e.g., in the
vacuum expectation value of the sigma field.
Applying the same technique to the scalar two-point

function G
(2,0)
R (s) – which is the analogue of the correla-

tor H(s) in (1) – allows one to work out recursion rela-
tions between the coefficients of the leading logarithms.We
show that these recursion relations also contain sublead-
ing terms, which are not accessible by the renormalization
group. As a result of this, given the leading logarithm at
order gNr , the recursion relations do not allow one to calcu-
late the leading logarithm at order gN+1r .
A summation of the explicit scale dependent leading log-

arithms is nonetheless always possible. However, if there
are more than two scales involved, a separation between
different types of leading logarithms like lnN (−s/µ2) and
lnN (2m2r/µ

2), for example, is not possible. Therefore, an
independent summation of the leading momentum loga-
rithms fails, and it is only the sum of all coefficients of ex-
plicit scale dependent leading logarithms that is accessible.
In the special case of only two scales (for example µ and
mr), the coefficients of the explicit scale dependent loga-
rithms trivially agree with the coefficients of the leading
mass logarithms.
To conclude, even if the linear sigma model repre-

sents an effective renormalizable theory for the leading
logarithms of chiral perturbation theory, the summation
of these leading logarithms by straightforward use of the
renormalization group does not seem to be possible. How-
ever, using an alternative approach, a solution to the prob-
lem could still be feasible.
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Appendix A: Triangle integrals

Most of the one- and two-loop integrals that are used in
the loop calculations in Appendix B and C are provided
in [12]. However, triangle integrals with one, two and three
massless particles propagating in the loop are not consid-
ered there. This is the reason why we indicate the results of
these vertex functions here:

C(1)(s,m2) =

∫
ddl

i(2π)d
1

m2− (l+k1)2
1

m2− (l−k2)2
1

−l2

=
1

16π2m2

(
1+
τ

12
+O(τ2)

)
,

C(2)(s,m2) =

∫
ddl

i(2π)d
1

m2− l2
1

−(l+k1)2
1

−(l−k2)2

=−
1

16π2m2τ
(Li2(−τ)+ ln(1+ τ) ln(−τ)) ,

τ =
s

m2
, s= (k1+k2)

2 , (A.1)

and

C(3)(s, µ) = µ4−d
∫
ddl

i(2π)d
1

(l2)2
1

(l−p)2

Fig. 3. Displayed are all the one-loop diagrams and the two-loop diagrams with a branch point at s= 0. The solid line indicates
a sigma particle and the dashed line a pion, respectively

Table 1. Contributions of the different diagrams to the factor of L2s . Every term has to be multiplied

with
g2r

1024m4rπ
4

Diagram Contribution Diagram Contribution Diagram Contribution

T1+T2+T3 90m2r +99s N3 −24m2r −24s N6
24m4r
s +24m2r +18s

N1
12m4r
s +12m2r +9s N4 12m2r +9s N7 −60m2r −60s

N2 −
36m4r
s −36m2r −27s N5 0 N8 −18m2r −2s

=
1

16π2s

{
−
1

ε
+γE+ln

(
−
s

4πµ2

)

+ ε

[
1

2
ζ(2)−

1

2

(
ln

(
−
s

4πµ2

)
+γE

)2]}

+O(ε2) ,

s= p2 . (A.2)

Appendix B: Two-loop calculation

In the two-loop calculation, we are only interested in the
momentum logarithms. It is therefore sufficient to consider
diagrams that develop a branch point at s= 0. The set of
one- and two-loop selfenergy diagrams that contribute to
the discontinuity at threshold are shown in Fig. 3. The an-
alytical expressions of the two-loop integrals can be found
in [12], and we adopt the conventions used in this reference.
We expand these expressions around s= 0 by keeping the
momentum logarithms and expanding the remaining part
in a Laurent series in s. Evaluating

G
(2,0)
R (s) =

1

M2σ− s−Σ(s)
, (B.1)

whereMσ is the bare mass of the heavy particle which ap-
pears in the spontaneously broken phase,

M2σ = 2m
2
r

[
1−30grλ−

9gr
16π2

ln

(
M2σ
µ2

)
+O
(
g2r
)]
,

(B.2)

yields the result of (12). In Table 1 we indicate the contri-

bution of each diagram Nx to the factor of L
2
s in G

(2,0)
R (s)
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by inserting only −iNx instead of the complete selfen-
ergies Σ in (B.1). The terms proportional to 1/s that
stem from the diagrams containing pion selfenergy parts
as well a s the contributions without an s cancel each
other.

Appendix C: Dispersive calculation

To calculate the discontinuity at two loops, the 1PI trun-
cated diagrams shown in Fig. 4 and the one-loop diagrams
indicated in Fig. 3 are required. We only need the analyt-
ical expressions of the diagrams for s small compared to
the mass of the sigma particle. Performing the phase space
integration

ρ(q2) = (2π)3
1

2

∑
a,b

∫
dµ(k1)dµ(k2)δ

(4)(p−k1−k2)

×
∣∣〈0|φ(0)|πa(k1)πb(k2)〉∣∣2 ,

(C.1)

where dµ(k) is the Lorentz invariant measure,

dµ(k) =
d3k

(2π)32k0
, (C.2)

leads to the discontinuity

ρ(s) =
1

16π2

[(
3

2m2r
+O(s)

)
gr+

(
−

3

16π2m2r

+
9

16π2m2r
ln

(
2m2r
µ2

)
+O(s)

)
g2r

+

(
−

3s

16π2m4r
+O(s2)

)
ln

(
s

µ2

)
g2r

+O(g3r )

]
, (C.3)

which agrees exactly with the discontinuity calculated di-
rectly from our two-loop result.
Evaluating the phase space integration in d dimensions,

we checked the discontinuities of the single two-loop dia-
gramN3, N4,N5, N7 andN8.

Fig. 4. Diagrams contributing to the matrix element 〈0|φ(0)|
πaπb〉. The solid line denotes a sigma particle and the dashed
line stands for a massless pion, respectively

Appendix D: Summation of scale dependent
leading logarithms

Splitting up the mass and momentum logarithms as de-
scribed in the text, it is possible to sum the logarithms Lµ
to all orders. As described in Sect. 5, we collect all leading
logarithmic terms that exhibit a factor of

(
s/m2r

)t
in the

function ft(x),

f(x) =
∞∑
t=0

(
s

m2r

)t
ft(x) , ft(x) =

∞∑
k=0

d
(k,t)
k xk ,

x= grLµ . (D.1)

Solving the corresponding differential equation with the
initial condition ft(0) = 1/2

t, one obtains

ft(x) =
1

2t

(
1−

3

4π2
x

) 1
2 (1+t)

. (D.2)

The series in s/m2r can also be summed and yields

G
(2,0)
R (s) =

1

2m2r
(
1− 3

4π2
x
)−12 − s

+ · · · , (D.3)

where the ellipsis denotes all the subleading terms. Choos-
ing ρ2 = 2m2r and calculating the real part of the zero of the
modified inverse propagator (D.3) one recovers the result
from the Sect. 5.2.2.
To establish the connection to the recursion relations

derived in Sect. 5, we express the coefficients d by means of
the coefficients a,

d
(N,t)
N = a

(N,t)
N,0 +a

(N,t)
N−1,1+ · · ·+a

(N,t)
0,N . (D.4)

Therefore, the function f(x) includes the coefficients of the
leading momentum logarithms. However, as we have seen
in Sect. 5, the RGE do not allow to sum them separately.
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